Here are the three sections I authored in 2011 for the Wikipedia article on the Twin Paradox of special relativity:


    The equivalence of biological aging and clock time-keeping

    A non-spacetime approach

    No twin paradox in an absolute frame of reference


In March of 2011, I observed a raging discussion taking place between several Wikipedia Twin Paradox editors on their various "editor talk pages". They were trying to come to grips with whether or not biological aging was affected by changes in inertial motion in the same manner as is a mechanical or electromagnetic clock. They were floundering and not coming close to the fundamental concept involved.

This was a matter that had never been a mystery to me. Without participating in the discussion, I simply authored the section immediately below and added it to the Twin Paradox article. It put a complete and instantaneous end to the discussion:

The equivalence of biological aging and clock time-keeping

All processes -- chemical, biological, measuring apparatus functioning, human perception involving the eye and brain, the communication of force -- are constrained by the speed of light. There is clock functioning at every level, dependent on light speed and the inherent delay at even the atomic level. Biological aging, therefore, is in no way different from clock time-keeping.[31] This means that biological aging would be slowed in the same manner as a clock.

-----------------

The previous day I had authored the two sections below. Both sections concern matters that had been inexcusably unaddressed in the article:

A non-spacetime approach

An "out and back" twin paradox adventure may incorporate the transfer of clock reading from an "outgoing" astronaut to an "incoming" astronaut, thus entirely eliminating the effect of acceleration. Also, the physical acceleration of clocks does not contribute to the kinematical effects of special relativity. Rather, in special relativity, the time differential between two reunited clocks is produced purely by uniform inertial motion, as discussed in Einstein's original 1905 relativity paper,[25] as well as in all subsequent kinematical derivations of the Lorentz transformations.

Because spacetime diagrams incorporate Einstein's clock synchronization (with its lattice of clocks methodology), there will be a requisite jump in the reading of the Earth clock time made by a "suddenly returning astronaut" who inherits a "new meaning of simultaneity" in keeping with a new clock synchronization dictated by the transfer to a different inertial frame, as explained in Spacetime Physics by John A. Wheeler.[28]

If, instead of incorporating Einstein's clock synchronization (lattice of clocks), the astronaut (outgoing and incoming) and the Earth-based party regularly update each other on the status of their clocks by way of sending radio signals (which travel at light speed), then all parties will note an incremental buildup of asymmetry in time-keeping, beginning at the "turn around" point. Prior to the "turn around", each party regards the other party's clock to be recording time differently from his own, but the noted difference is symmetrical between the two parties. After the "turn around", the noted differences are not symmetrical, and the asymmetry grows incrementally until the two parties are reunited. Upon finally reuniting, this asymmetry can be seen in the actual difference showing on the two reunited clocks.[30]


No twin paradox in an absolute frame of reference

Einstein's conclusion of an actual difference in registered clock times (or aging) between reunited parties caused Paul Langevin to posit an actual, albeit experimentally undetectable, absolute frame of reference:

In 1911, Langevin wrote: "A uniform translation in the aether has no experimental sense. But because of this it should not be concluded, as has sometimes happened prematurely, that the concept of aether must be abandoned, that the aether is non-existent and inaccessible to experiment. Only a uniform velocity relative to it cannot be detected, but any change of velocity .. has an absolute sense."[36]

In 1913, Henri Poincare's posthumous Last Essays were published and there he had restated his position: "Today some physicists want to adopt a new convention. It is not that they are constrained to do so; they consider this new convention more convenient; that is all. And those who are not of this opinion can legitimately retain the old one."[37]

In the relativity of Poincare and Hendrik Lorentz, which assumes an absolute (though experimentally indiscernible) frame of reference, no twin paradox arises due to the fact that clock slowing (along with length contraction and velocity) is regarded as an actuality, hence the actual time differential between the reunited clocks.

That interpretation of relativity, which John A. Wheeler calls "ether theory B (length contraction plus time contraction)", did not gain as much traction as Einstein's, which simply disregarded any deeper reality behind the symmetrical measurements across inertial frames. There is no physical test which distinguishes one interpretation from the other.[38]

In 2005, Robert B. Laughlin (Physics Nobel Laureate, Stanford University), wrote about the nature of space: "It is ironic that Einstein's most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed ... The word 'ether' has extremely negative connotations in theoretical physics because of its past association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather nicely captures the way most physicists actually think about the vacuum. ... Relativity actually says nothing about the existence or nonexistence of matter pervading the universe, only that any such matter must have relativistic symmetry (i.e., as measured)."[39]

In Special Relativity (1968), A. P. French wrote: "Note, though, that we are appealing to the reality of A's acceleration, and to the observability of the inertial forces associated with it. Would such effects as the twin paradox exist if the framework of fixed stars and distant galaxies were not there? Most physicists would say no. Our ultimate definition of an inertial frame may indeed be that it is a frame having zero acceleration with respect to the matter of the universe at large."[40]